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The Orr-Sommerfeld equation admits two solution modes for the two-dimensional 
plane wake. These are the sinuous mode with antisymmetric streamwise fluctuations 
and the varicose mode with symmetric streamwise fluctuations. The varicose mode 
is often ignored because its amplification rates are considerably less than those of the 
sinuous mode. An experimental investigation of the varicose mode in a two- 
dimensional turbulent wake was undertaken to determine if this mode of instability 
agrees as well with linear stability theory, as did the sinuous mode in previous 
experiments (Wygnanski, Champagne & Marasli 1986). The experiments demon- 
strated that, although it is possible to generate a nearly pure symmetric 
disturbance wave, it is very difficult to do as the flow is very sensitive to the slightest 
asymmetries which might be present in the experiments. These asymmetries are 
preferentially amplified, resulting in the eventual distortion of an initially prominent 
symmetric wave. It was therefore necessary to decompose phase-averaged measure- 
ments of the streamwise component of the velocity fluctuations into their 
symmetric and antisymmetric parts, and the results were compared with the 
appropriate theoretical eigenfunctions from linear stability theory. The lateral 
distribution of the amplitude and the phase of each mode agree reasonably well with 
their theoretical counterparts from the Orr-Sommerfeld equation. Slowly diverging 
linear theory predicts the streamwise variation of the sinuous mode quite well, but 
fails to do so for the varicose mode. An eddy-viscosity model, coupled with the slowly 
diverging linear equations, predicts the streamwise variation of both modes 
reasonably well and describes the transverse distributions of the perturbation 
amplitudes for both modes, but it fails to predict the distribution of phase for the 
varicose mode. 

1. Introduction 
Large-scale coherent structures in the small-deficit wake behind a flat plate were 

observed by Wygnanski, Champagne & Marasli (1986) using combined hot-wire and 
flow-visualization techniques. t Evidence was presented that these large-scale 
structures, which resemble the KarmBn vortex street in appearance, can be described 

t Note the following corrections to Wygnanski et al. (1986) : 
(i) In table 1, the value of 0 for the 6.35 mm diameter cylinder a t  a Reynolds number of 5800 

(ii) Equation (2.3) should read: 
is 3.51 mm, not 2.64 mm. 
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by linear stability theory. Theoretical calculations based on linear, inviscid stability 
theory showed excellent agreement with the measured transverse distributions of 
amplitudes and phases of externally imposed sinuous waves on the fully turbulent 
wake behind the flat plate. When the divergence of the mean flow was incorporated 
into the analysis, the spatial amplification of the sinuous waves in the streamwise 
direction was successfully predicted. Although the sinuous disturbances represent 
the predominant mode of instability from linear theory, the possible importance of 
the varicose disturbances (those that have a symmetrical streamwise component 
about the wake centreline) was considered. Varicose disturbances have relatively 
smaller amplification rates and are usually neglected in stability analyses. The 
varicose mode, however, may a t  times dominate the shape of the large structures 
(Papailiou & Lykoudis 1974; Rockwell, Ongoren & Unal 1985; Williamson 1985) 
and, even when the prevailing instability is mainly sinuous in nature, a small 
varicose component was shown to alter the gross behaviour of the calculated 
streakline patterns (Wygnanski et al. 1985). The latter provided the initial motivation 
for the present study, the purpose of which is to investigate the significance of the 
varicose mode in two-dimensional, small-deficit, turbulent wakes. One should note 
that the varicose mode has not been investigated experimentally in either laminar or 
turbulent wakes, and its existence was by no means assured, particularly in a fully 
turbulent environment. 

2. Description of experiments 
The wakes were generated in the University of Arizona's low-speed wind-tunnel 

facility. The zero-pressure-gradient test section is nominally 61 by 91 em in cross- 
section and 6 m  long. The speed in the test section was 7.5m/s for the present 
experiments, while the free-stream disturbance level in the streamwise velocity 
component was 0.03 %. The tunnel is equipped with chilled water coils to maintain 
the temperature of the flow constant. The flat-plate wake generator was a solid 
aluminium plate 30 em long, 61 em wide, and 0.635 em a t  its point of maximum 
thickness. The leading edge was rounded, and the trailing edge was tapered to 1 mm 
thickness over the last 10 em of the plate surface. Trip wires, placed 3 em from the 
leading edge, generated a turbulent boundary layer before the tapered section was 
reached. The Reynolds number based on the momentum thickness, 8, was 
approximately 1400 for the present data. 

In  the previous experiments by Wygnanski et al. (1986), sinuous waves were 
generated by oscillating a small flap (5  mm in length) hinged to the trailing edge of 
the plate. For the present experiments, sinusoidal varicose disturbances, which are 
symmetrically distributed about the wake centreline, were generated by oscillating 
two small flaps 180" out of phase. The flaps were placed symmetrically above and 
below the plate, approximately 18 em from the leading edge and just upstream of the 
tapered trailing-edge region of the plate, as indicated by the sketch shown in figure 
1. The insert shown in figure 1 presents details of the flap arrangement. The dashed 
lines show the maximum range of motion of the flaps, which was set such that the 
flaps did not touch the plate. Scotch tape was used as the hinge to attach the flaps 
to the ramps. Nylon ribbons were used to connect the downstream edge of each side 
of the flaps to matched loudspeakers, which were located on each side of the plate 
just outside the tunnel sidewalls. The forcing level is specified by the maximum value 
of the measured r.m.s. of the streamwise component of the perturbation wave at 
z/8 = 200. For the varicose mode, the maximum occurs at the centreline. 
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FIGURE 1. Schematic of plate and wake defining the nomenclature. The insert shows the details 
of the flap arrangement. 

3. Theoretical background 
The instantaneous streamwise (u) component velocity signal is represented by 

u = lJ+ii+u', (1) 

where 0 is the mean or time-averaged part, 4 is the periodic wave contribution, and 
u' is the turbulent part (Reynolds & Hussain 1972). Another quantity that will be 
referred to often is the total fluctuating signal, 

u = 4+u'. (2) 

Assume that the perturbation stream function for a wavy disturbance super- 

(3) 

where X = "/Lo, q = y/Lo,  J? = 2x  f L,/U, is the non-dimensional frequency and 
a = a, + iai is a non-dimensional complex quantity whose real part represents the 
Wavenumber while its imaginary part represents the spatial amplification rate; a is 
non-dimensionalized by Lo. The growth or decay of such disturbances, as long as they 
remain sufficiently small to permit linearization of the equations of motion, are 
governed by the OrrSommerfeld equation which, in non-dimensional form, is given 
bv 

imposed on a parallel flow O(y) has the form 

$(X, 7, t )  = Re [$(q)  ei(aX-bt) 1 7  
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where U* = g/Ua;  Re is the Reynolds number of the basic flow, chosen here to  be 
U, L o / v ;  U, is the free-stream velocity; Lo is the wake half-width (see figure 1 ) ;  and 
v is the kinematic viscosity. 

At large values of the transverse coordinate, i.e. q -+ f 00, U* -+ 1,  and U*" + 0, 
equation (4) reduces to  

$"-[y2(q)+a2]$"+a2y2(q)$ = 0, ( 5 )  

where y2(q) = ia Re (U* -P/a) + a2. This equation has four independent solutions for 
each side of the flow, which can be described by 

4 4 

$ ( q ) =  I; Anevpn as q+-oo, &q)= CBnev*n as q++co, (6) 
n-1 n-1 

where Pl.2 =+a,  133.4 =&?(-a), 

41.2 = f a ,  43,4  = fy(+ 00). 
The disturbances must decay exponentially with increasing distance from the 
centreline of the wake, and this decay leads to  A, = A, = B, = B3 = 0. 

In  order to satisfy these boundary conditions, a shooting technique described by 
Betchov & Szewczyk (1963) is used for low Reynolds numbers (Urn Lo/v < 800). For 
large Reynolds numbers, a Gram-Schmidt orthonormalization technique is used, as 
described by Bellman & Kalaba (1985) and utilized by Wazzan, Okamura & Smith 
(1968) and others. 

The inviscid case is much simpler and the boundary conditions are 

q5' f ia$ = 0, (7)  

for q + f CO, which requires the disturbance to decay exponentially on both sides of 
the wake. 

4. Generation of varicose mode 
It was extremely difficult to generate purely symmetrical disturbances because 

any lack of symmetry in the generating mechanism resulted in a combination of 
modes. The results of one attempt to  generate a pure varicose mode are given in 
figure 2. Data on the transverse distributions of ii2/ui for downstream locations in 
the range 100 < x/O < 1400 are shown. The flaps were driven 180" out of phase a t  
35 Hz, and a rake of nine hot wires was used to obtain the data. This excitation 
frequency corresponds to a Strouhal number based on momentum thickness, St = 
fO/U,, of 0.0127. The maximum value of the r.m.s. of the u-component of the 
perturbation velocity a t  x/O = 200 was (fiZZrms/uO)max = 11.7 YO. The data indicate 
that the flow is self-preserving, but the self-preserving distribution for this case 
differs slightly from that for the unforced case ( p / u i ) ,  which is shown in figure 3 for 
comparison. The flow in both cases is fully turbulent and, in the forced case, only - 10% of the total fluctuations are coherent, which is also reflected by comparing 
the maximum value of (fi+u')z/ui for the forced case and p / u i  for the unforced 
case. The ratio of a&/@& is 0.76 for the unforced case and 0.80 for the forced case. 
One should note that, in general, due to  the presence of the artificially introduced 
coherent motion, the flow is not expected to  be as self-preserving as the unforced 
case. The fact that it is should be attributed to the low level of forcing, which perhaps 
justifies the application of linear theory. 

The mean velocity distributions for each wake are self-preserving, although the 
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F I G U R E  2. The measured distribution of G2/ui for the varicose forced wake. Different symbols 
represent different downstream locations in the range 100 < s/O < 1400. 
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FIGURE 3. The measured distribution of ti2/.: for the unforced wake 

wakes developed at  slightly different rates in the downstream direction. The 
streamwise development of the characteristic scales u, and Lo can be expressed as 

where W, and A ,  are constants for a given self-preserving wake. The values of Wo and 
A,  for the unforced wake are 1.68 and 0.304, respectively ; while those for the varicose 
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FIQURE 4. (a) The amplitude distributions of the u-component of the disturbance wave for f = 35 
Hz: 8, phase-averaged measurements; -, theoretical varicose L, is the value of Lo at z/8 = 
1390. (b) The phase distributions of the disturbance wave : , phase-averaged measurements ; -, 
theoretical varicose. 

forced wake are 1.62 and 0.312. The mean field is therefore affected slightly by the 
forcing. The virtual origin xo = 0 and the momentum thickness 6 = 2.9 mm for all 
sets of data presented in this paper. The self-preserving mean velocity profiles are, 
however, effectively identical for the two wakes. That is, plots of the self-preserving 
function f (v ) ,  defined by 

- 

- ’(” ’) = exp [ - 0 . 6 3 7 ~ ~  - 0 . 0 5 6 ~ ~ 1 ,  
= U @ ( X )  

(10) 

are representative of the profiles for the two wakes. 
The distributions of the amplitudes and phases of the velocity perturbations 

associated with the varicose waves are shown in figure 4(a ,  b )  for five downstream 
locations. The data, shown by the symbols, were obtained by recording the velocity 
signal together with the sinusoidal signal activating the flaps. The velocity signals 
were phase-averaged over 500 cycles of the flap motion, and the Fourier transform 
applied on the phase-averaged data provided the amplitudes and phase estimates of 
the spectral elements of the coherent velocity field. The subscript f denotes the 
component at the fundamental forcing frequency. The abscissa in the figures is 
dimensional y and the scaling is identical in ail figures. The ordinate in figure 4 (a) is 
normalized amplitude and in figure 4 ( b )  is relative phase shift. The results are 
displayed in this form to indicate the downstream evolution of the wave. The solid 
lines represent the theoretical results computed from inviscid, linear stability theory 
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FIQURE 5.  The downstream growth of the centreline value of the u-component disturbance 
amplitude, f = 35 Hz : A, measurements ; -, theoretical linear theory including effects of mean 
flow divergence. 

using the local measured mean velocity profiles. The measured and theoretical 
amplitude results are normalized by their respective maxima for each downstream 
location. The disturbance wave remained symmetric for more than 1000 momentum 
thicknesses before becoming contaminated by asymmetries. There is reasonable 
agreement between the experimental and theoretical results, even though the wake 
is fully turbulent. Some of the fine details, such as the minor lobes closest to the 
centreline shown in the theoretical curves, are not evident in the experimental 
results. These lobes will subsequently be shown to be related in part to the use of the 
inviscid approximation. 

Another set of measurements was taken a t  a higher excitation frequency of 50 Hz, 
St = 0.0179, which according to linear theory should evolve sooner. The forcing level 
a t  the initial measuring station x / e  = 200 was (iirms/uo)max = 11.5%. Again, the 
agreement between the experimental and theoretical amplitude and phase 
distributions was satisfactory. I n  this case, the disturbance wave was not detectable 
beyond x / e  > 700. 

The success of inviscid linear theory ends for the varicose mode when the 
streamwise growth of the disturbance is considered. A comparison between the 
experimental and theoretical results for the 35Hz case is shown in figure 5.  The 
theoretical prediction includes the effects of the divergence of the mean flow using the 
analysis presented by Wygnanski et al .  (1986). The theoretical results indicate a 
monotonic growth of the amplitude of Gf on the centreline of the wake, whereas the 
measurements show a decrease. This discrepancy will be discussed in a subsequent 
section. 

The experiments demonstrated that i t  is possible to generate a nearly pure 
symmetric disturbance wave. The difficulty encountered in doing so indicates that 
the flow is very sensitive to the slightest asymmetries which might be present in the 
experiments. These asymmetries are preferentially amplified, resulting in the 
eventual destruction of an initially prominent symmetric wave. It was therefore 
evident that the total phase-averaged velocity signal should be decomposed into its 
symmetric and antisymmetric modes in order to study the downstream evolution 
and interaction. 
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FIGURE 6. (a )  The transverse distribution of the amplitude and phase of the forced wave in 
form. ( b )  As (a)  but presented in terms of real and imaginary parts. Symbols represent data, 
the solid lines represent the curve fit to data. 
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5. Decomposition procedure 
To decompose the phase-averaged data into modes, we shall take advantage of the 

fact that the sinuous and varicose modes have &components that are odd and even 
functions, respectively, of y. Therefore, if we separate the measured perturbations 
into odd and even parts, we may have a means of separating the sinuous and varicose 
modes. The amplitude and phase distributions of the separated parts would then 
have to be examined and compared to the theoretical distributions of the sinuous and 
varicose modes. 

The decomposition procedure is given as follows. First, we measured the transverse 
distribution of the phase-averaged u-component, S? using an array of nine hot wires. 
Typically, 36 points were used to  define a distribution. The phase-averaged data for 
each y-position was Fourier transformed to determine S,, the component of the 
velocity perturbation associated with the forced wave at  the forcing frequency, The 
transverse distribution of the amplitude and phase (polar form) of S, are shown in 
figure 6 (a) for some example data. The triangles and squares represent the data. The 
same data are shown in figure 6(b)  but in terms of their real and imaginary parts, 
where the subscripts r and i represent real and imaginary, respectively. To obtain the 
odd and even parts of these distributions, the centreline location was estimated 
using the measured mean velocity profile. Then, as we generally did not have data 
at exactly equidistant positions about the centreline, we fitted a curve to the 
measured data. Fourier series in y (or 7) were used as a curve fit to the real and 
imaginary parts separately. The fitted curves are shown for the example data by the 
solid lines in figure 6(b) .  The curve fit to  each was separated into its odd and even 
parts, indicated in figure 7 (a, b)  by the dashed lines and solid lines, respectively. The 
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FIGURE 7. (a) The odd and even parts of the curve fit: ---,  odd part, -, even part. (b) As in (a) 
but expressed in polar form. ( c )  -, superposition of odd and even parts; symbols represent original 
data. 

respective odd and even parts are expressed in polar form in figure 7 (b ) ,  while their 
superposition, which restores the original data, is shown in figure 7 ( c )  by the solid 
lines. The symbols in figure 7 ( c )  represent the original data, which agree well with the 
estimated distributions obtained from the curve fits to the real and imaginary parts. 
This agreement demonstrates that the curve fitting was done satisfactorily without 
introducing any bias. Note, for the example data, that the amplitude distribution 
has a large even component, although it is asymmetric. One should also recognize the 
resemblance of the decomposed parts, shown in figure 7 ( b ) ,  to the sinuous and 
varicose modes computed from linear stability theory. 

6. Combined modal forcing of the wake 
By applying a small phase difference to the relative motion of the two flaps, a 

sinuous component was also introduced. This provides a means of simultaneously 
forcing the wake with both modes to study their possible interaction. The results of 
combined forcing a t  a frequency of 28 Hz (8 t  = 0.0109) in terms of the lateral 
distribution of ti2/ut are shown in figure 8. The forcing level (3iirms/uO)max was 12.0% 
at x/e = 200. The flow appears to be self-preserving, but the ti2 distribution is 
asymmetric. The mean velocity profile retains its symmetry, and the mean spreading 
rate is given by the values of W, and A ,  equal to 1.61 and 0.312, respectively. Again, 
the amplitude of the coherent fluctuations is small, and the wake maintains a nearly 
self-preserving form. 

The measured amplitude and phase distributions of 3, for five downstream 
locations are shown in figure 9. The ordinate for each is the normalized amplitude of 
3,. The abscissa is y and has the same scale for each plot. The wake growth with x 
is evident. The amount of asymmetry changes initially with x but appears to remain 
nearly constant in the far wake (x/O > 7 5 0 ) .  The solid lines in figure 9 will be 
discussed at the end of 57. These distributions were decomposed into their odd and 
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FIQURE 8. The measured distributions of tiz/ui for the forced wave. Combined mode forcing, 
f =  28 Hz. 
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FIQURE 9. (a)  The amplitude distributions of the u-component of the disturbance wave: 8, the 
measured phase-averaged results ; -, linear superposition of modes using equation (1 1). L, is the 
value of Lo a t  z/O = 1310. ( b )  The phase distributions of the u-component of the disturbance wave: 
m, measured ; -, superposition of theoretical modes. 
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FIQURE 10. (a) The amplitude distributions of the antisymmetric component : A, measured ; -, 
theoretical sinuous. L, is the value of Lo at x/O = 1310. (6) The phase distributions of the 
antisymmetric component : FJ, measured ; --, theoretical sinuous. 

even parts. The resulting odd part for each downstream location is plotted in figure 
10(a), designated by triangles. The ordinate is the normalized amplitude and the 
abscissa is y, again. The solid lines represent the normalized amplitude of the 
theoretical sinuous mode computed from linear, inviscid stability theory using the 
measured mean velocity profiles. The comparison between the theoretical and 
measured phase distributions is shown in figure lO(b) .  The agreement between the 
measured odd parts and the theoretical sinuous mode is excellent. Thus, the 
measured odd part undoubtedly corresponds to the sinuous mode obtained from the 
stability theory. 

The amplitude and phase distributions for the even parts a t  each downstream 
location are shown in figure 11 (a,  b ) .  The solid lines represent the theoretical varicose 
distributions. The agreement is quite satisfactory, though i t  is not as good as for the 
sinuous model, but the even part appears to correspond to the varicose mode of linear 
stability theory. 

The relative intensity of the two modes was obtained by integrating the amplitude 
distributions across the flow for each mode and taking the ratio of the two. The 
downstream evolution of the ratio is shown in figure 12. Initially, the amplitude of 
the varicose mode is about twice that of the sinuous mode but, in accordance with 
linear theory (parallel flow), the sinuous mode eventually dominates and an 
equilibrium ratio of A,/A,  = 0.5 is reached for x/O > 800, at least for this particular 
experiment. It is surprising that a non-vanishing constant ratio is achieved, but the 
generality of this intriguing result is yet to be established. 
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FIQURE 11. (a) The amplitude distributions of the symmetric component: A, measured; -, 
theoretical varicose. L, is the value of Lo a t  z/O = 1310. (b) The phase distributions of the 
symmetric component : m, measured ; -, theoretical varicose. 
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FIQURE 12. The relative ratio of the two modes. 

The spatial growth of the maximum of the sinuous and varicose components of the 
disturbance wave is shown in figure 13. The slowly diverging analysis presented in 
Wygnanski et al. (1986) was used to obtain the theoretical prediction for each mode 
represented by the solid lines. The growth of the sinuous mode is predicted quite well 
by linear theory, as it was in the case presented by Wygnanski et al. (1986). The 
growth of the varicose mode is not well predicted, however, which was also the case 
for the purely varicose forcing presented previously. An interesting point to note 
regarding the spatial amplification of the two modes is that, for the same mean flow 
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FIQURE 13. The spatial variation of the maximum value of 4, for f = 28 Hz for (a) the sinuous 
mode and (b) the varicose mode: A, measured; -, inviscid; ---, Re, = 30. 

and frequency, the varicose mode is predicted to amplify more than the sinuous 
mode, although the growth rates from parallel theory are much larger for the latter. 
This point is confirmed by T. F. Balsa (private communication), who performed the 
calculations independently, utilizing a different computational scheme. Apparently, 
the divergence effects which inhibit the rate of amplification of a particular mode are 
much more severe on the propagation of the sinuous mode than the varicose mode. 
The experimental results, however, do not seem to support this theoretical 
observation and some conjectures will be presented regarding this discrepancy and 
its possible implications for the evolution of laminar near wakes. The dashed lines 
will be discussed subsequently. 

7. Superposition of modes 
The agreement between the amplitudes and phases of the odd and even parts of the 

phase-averaged data and the theoretical sinuous and varicose modes (figures 10 and 
11) suggests that a proper superposition of the theoretical modes should agree well 
with the experimental phase-averaged results. 

The proposed superposition is as follows : 

$;COT ( Y )  = C , $ 2 Y ) + C " $ I  (Y), (11) 
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where $koT = measured disturbance (?If), $: = theoretical sinuous eigenfunction, 
q5: = theoretical varicose eigenfunction ; and c, and c, are complex constants given 

by -m J-, dloT4;dY 
c, = (12) 

and J --m c, = J;* q5:$:dY 

The composite theoretical curves, indicated by the solid lines, are compared with the 
experimental data in figure 9 and, as expected, the agreement between the two is 
quite good. 

8. Effects of viscosity 
The Reynolds number based on the free-stream velocity, the half-width of the 

wake, and the molecular viscosity is about lo4 for most of the data presented here 
and, therefore, viscous effects are not expected to be of importance. However, if one 
considers the appropriate velocity scale to be the velocity deficit of the wake, which 
is typically 5 YO of the free-stream velocity, the ensuing Reynolds numbers are of the 
order of 500. This motivated a brief study of the stability of the viscous wake. For 
this purpose, the full Orr-Sommerfeld equation (4) has to be considered together 
with the appropriate boundary conditions (presented in $3). The Orr-Sommerfeld 
equation was solved numerically using the Gram-Schmidt orthonormalization 
technique with double precision complex arithmetic, which provided valid solutions 
for rather high Reynolds numbers. 

The calculations were done using the mean-flow parameters corresponding to the 
combined modal forcing experiment. Figure 14 (a) shows the amplification rates 
versus the non-dimensional frequency p of the sinuous mode for a constant value of 
the velocity deficit uJU,  = 12.3%, which corresponds to the initial streamwise 
location of the experiment. Three cases are presented. The solid curve represents the 
inviscid solution. The dashed line corresponds to the viscous solution for Re, = 
U, 0/v = 1400, and at this Reynolds number the difference between the inviscid and 
viscous amplification rates is hardly visible. The Reynolds number based on 0 is the 
appropriate choice for the experiments, as 0 is the proper lengthscale characterizing 
the wake generator. Recall that 0 is a constant for the zero-pressure-gradient wake. 
For this velocity deficit, the experimental excitation frequency 28 Hz corresponds to 
p = 0.282, and it is amplified. The third curve, which is indicated by the dotted- 
dashed lines, represents calculations done a t  a much lower Reynolds number, namely 
at Re, = 30, and the growth rates are more visibly lower than their inviscid 
counterparts. The reason for the choice of this quite low Re will be evident in the next 
section. Figure 14 ( b )  shows the calculated growth rates using the parameters 
corresponding to the final 2-station of our measurements (u,/U, = 4.5%). The 
nomenclature is the same as in figure 14(a). At this location, f = 28 Hz corresponds 
to p = 0.772, which is comfortably in the amplified region of all the cases presented. 
The streamwise variation of the growth rate, -ai, for the sinuous mode is presented 
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FIGURE 14. Amplification rates for the sinuous mode: (a) versus B,u,,/U, = 0.123; (6) versus 
p,uo/Um = 0.045; (c) versus x/O; -, inviscid; ---, Re, = 1400; -.-, Re, = 30. Recall that  a, 
is non-dimensionalized by Lo. 

in figure 14(c). For the present case, the amplification rates decay almost linearly 
with x. It is certainly evident that the viscous effects are negligible for this case. The 
wavenumber a, and the phase speed are not shown as they are not significantly 
affected by viscosity. 

The varicose mode is observed to be affected more by viscosity. Figure 15(a, b,  c )  
depicts similar calculations for the varicose mode using the experimental mean-flow 
parameters. The nomenclature is the same as in figure 14(a, b,  c) .  The growth rates 
at Re, = 1400 are approximately 10 % less than their inviscid counterparts. However, 
this difference cannot explain the discrepancy between the experimental results and 
the inviscid predictions shown in figure 13(b) .  But, a dramatic difference is seen for 
the Re, = 30 calculations -the disturbances are damped a t  this low Reynolds 
number. Again, the phase speed and a, are essentially unaffected. 

There is no significant change in the shape of the eigenfunction for the sinuous 
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FIGURE 15. Amplification rates for the varicose mode: (a) versus p, u, /U,  = 0.123; ( b )  versus p, 
u,/U, = 0.045; (c) versus x/8; -, inviscid; ---, Re,, = 1400; -.-, Re, = 30. 

mode when viscous effects are included, as can be seen from figure 16(a). The u- 
amplitude distribution of the velocity perturbation for the inviscid case is compared 
with the viscous solutions for Re, = 1400 and 30. The distributions are normalized 
using their respective maxima. The parameters corresponding to x/8 = 400 of our 
measurements were used in the computations of the presented cases (uo/U, = 8.1 %, 
p = 0.428). The shape of the predicted varicose eigenfunction is more significantly 
affected, as viscosity tends to eliminate the kinks occurring in the u-amplitude 
distribution, as shown in figure 16(b).  The velocity gradients in the varicose mode are 
much larger than those occurring in the sinuous mode, thus making the higher- 
derivative terms in (4) of considerable importance, and the viscosity works towards 
smoothing those large gradients. 
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9. Effects of turbulence 
The effects of the turbulent fluctuations on the spatial propagation of the 

perturbation waves are completely ignored in the present model. As already 
mentioned, all theoretical results are computed from linear stability theory using the 
measured local mean velocity profiles. The base flow is fully turbulent rather than 
laminar. The viscous effects, as discussed in the previous section, are estimated using 
the same mean velocity profiles along with the molecular viscosity. We realize that 
the wave propagation characteristics will be affected by the turbulence, but we also 
are unaware of any generally accepted method for accounting for such effects. If one 
considers the dynamical equation for .ii in the presence of turbulence, as presented by 
Reynolds & Hussain (1972; equation 2.6), new unknown terms appear, such as the 
time and phase average of u’v’. The simplest way to account for the effects of 
turbulence is to use an eddy viscosity along with the turbulent base flow as done by 
Tam & Chen (1979), Liu (1971), Potter (1971), and others. If we adopt a similar model 
here and replace the molecular kinematic viscosity with an eddy viscosity in (4), this 
approach leads to a possible explanation regarding the difference in behaviour of the 
sinuous and varicose modes shown in figure 13(a, b ) .  The magnitude of the eddy 
viscosity was estimated from our recent Reynolds-stress measurements in the 
unforced wake of the flat plate. These results indicate that the eddy viscosity is, on 
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the average, 40 lines larger than the kinematic viscosity of the fluid, so the effective 
Reynolds number for the present data becomes (Re,)eee = 30. Therefore, if one wants 
to lump the nonlinear effects stemming from the generation of Reynolds stresses 
(whether coherent or random) into a model represented by an eddy viscosity, then 
one should use an effective Re, which is based on vT. It is apparent from figure 14 (c) 
that, a t  this lower Reynolds number, the sinuous mode is still amplified, although a t  
a smaller rate. On the other hand, figure 15(c) shows that the varicose mode is 
damped over the entire experimental domain in accordance with the experimental 
results shown in figure 13 ( b ) .  The eddy-viscosity model brings improvement to the 
prediction of the streamwise variation, especially for the varicose mode. Figure 
13(a, b)  shows the spatial development of the maximum of the two modes. The 
dashed lines correspond to the calculation using the eddy-viscosity model with 
Re, = 30. The transverse distributions of the G-amplitudes are also well explained, as 
shown in figure 16(a, b ) .  The dotted-dashed lines represent the eddy-viscosity 
calculations using Re, = 30. A comparison with the measured distributions shows 
that, although the general features of the amplitude distributions are predicted quite 
well, the computed distributions are wider than their measured counterparts. This is 
undoubtedly caused by the significantly higher values of viscosity used in the 
Re, = 30 case. Also, although not shown here, the phase distribution for the varicose 
case is not well predicted (see Marasli 1988). Summarizing these results, linear stabiity 
theory predicts the local shapes of the eigenfunction distributions for both modes 
fairly well, while slowly diverging linear theory does a reasonable job for the 
streamwise variation of the sinuous mode. On the other hand, the eddy-viscosity 
model predicts the streamwise variation of both modes reasonably well and describes 
the transverse distributions of the perturbation amplitudes for both modes, but it 
fails to predict the distribution of phase for the varicose mode. 

The difficulty encountered in generating a varicose disturbance that survived in 
the far wake is more understandable through this model. Recall, however, that the 
slowly diverging analysis predicts larger overall amplification for the varicose mode 
than the sinuous mode in a laminar base flow. For particular wake-generator 
configurations, the near wakes in a laminar flow could be dominated by varicose 
instabilities (see, for example, Williamson 1985 ; Rockwell et al. 1985 ; and Papailiou 
& Lykoudis 1974). This does not mean that the varicose mode is the dominant 
instability for the near wakes. For the varicose mode to have a chance, the Reynolds 
number must be high enough to a avoid the viscous effects ; on the other hand, the 
flow must also be free of incoherent fluctuations to maintain a laminar base flow. 

The eddy-viscosity model appears to be adequate for understanding some of the 
features of travelling waves in a fully turbulent base flow ; however, its shortcomings 
have to be kept in perspective. In  addition to its problems of describing turbulent 
flows in general, the fact that turbulence reorganizes itself by interacting with the 
coherent mot'ion (Hussain 1983 ; Marasli 1988) is an additional complexity which 
cannot be described by this model. Nevertheless, a conceptual simplification of the 
effects of incoherent turbulent fluctuations is provided by this model. 

10. Conclusions 
It is possible to generate a nearly pure varicose mode of instability in the wake. 

The sensitivit'y of the flow to asymmetric disturbances, however, makes it a difficult 
experimental task. Even the slightest asymmetric disturbance can be preferentially 
amplified, as the growth rates of sinuous disturbances are much larger than those for 
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varicose disturbances. Therefore, contamination of the varicose mode by the sinuous 
mode is difficult to avoid, especially over large downstream distances. 

A decomposition technique was developed to separate a phase-averaged 
distribution into its symmetric and antisymmetric components. The measurements 
show that these components agree well with their corresponding theoretical 
counterparts, that is, the varicose and sinuous modes from linear stability theory. 
The relative strength of the two modes at any downstream location can then be 
determined by integrating the amplitude distribution across the flow for each mode 
and taking the ratio of the two. The modal decomposition technique was applied to 
a case of combined excitation. The relative-strength-ratio measurements show that, 
initially, the varicose mode was twice as strong as the sinuous mode, but the sinuous 
mode eventually became dominant because of the larger amplification rates. An 
equilibrium ratio was approached in the far wake for x/O > 1000. 

Viscosity affects the varicose mode more than it does the sinuous mode. As 
expected, the amplification rates were found to decrease with decreasing Reynolds 
number and velocity deficit, but the phase speed of the disturbance remains 
unaffected. An attempt to account for the effects of turbulence on the spatial 
propagation of a perturbation wave was made using an eddy-viscosity model. Based 
on this model, a possible explanation was obtained for the observed discrepancy 
between the experimental results and the slowly diverging wake prediction for the 
varicose mode. 
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